中国科学家提出新的空间目标跟踪滤波器
外媒报道:中国科学家提出一种新的用于空间目标跟踪的卡尔曼滤波器!2022年6月29日外媒报道。空间机器人在空间站的建设、运行和维护中起着至关重要的作用,空间机器人的目标跟踪算法需要过滤噪声以实现精确的功能,如何改进目标跟踪算法以滤除复杂的非高斯噪声?在最近发表在太空:科学与技术上的一篇研究论文中,一个由机械电子工程学院的学者和科学家组成的研究团队,北京理工大学和湖南大学提出了一种新的卡尔曼滤波器u0026广义最大相关熵卡尔曼滤波器,以在目标跟踪过程中可能遇到的各种形式的非高斯噪声下实现更好的性能,提高跟踪精度。

卡尔曼滤波(Kalmanfiltering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。斯坦利·施密特(StanleySchmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

在这一部分,我们就来描述源于DrKalman的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(RandomVariable),高斯或正态分配(GaussianDistribution)还有StatespaceModel等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

该系统可用一个线性随机微分方程(LinearStochasticDifferenceequation)来描述:X(k)AX(k1) BU(k) W(k)再加上系统的测量值:Z(k)HX(k) V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
3、卡尔曼滤波这里的Pdot是一个中间变量,你只看几个步骤是不可能会懂的,最好要全部一起看,下面是纤细步骤:这里用到的kalman主要分为5个步骤:(1)XA*X B*angular_speed_m;(2)PA*P*A Q;(3)XXKG(ZH*X);(4)KP*H(H*P*H R);(5)(IKG*H)*P;对矩阵P的更新只有PA*P*A Q;P。
除非注明,文章均由 白起网络 整理发布,欢迎转载。